ESTEBAN DE JESÚS HERRERA C.
"MASTERHC"
MODELO ATOMICO DE BOHR
(Gano el Premio Nobel de Física) "por su investigación de la estructura de los átomos"
La estructura electrónica de un átomo describe las energías y la disposición de los electrones alrededor del átomo. Gran parte de lo que se conoce acerca de la estructura electrónica de los átomos se averiguó observando la interacción de la radiación electromagnética con la materia.
Sabemos que el espectro de un elemento químico es característico de éste y que del análisis espectroscópico de una muestra puede deducirse su composición.
Sabemos que el espectro de un elemento químico es característico de éste y que del análisis espectroscópico de una muestra puede deducirse su composición.
El origen de los espectros era desconocido hasta que la teoría atómica asoció la emisión de radiación por parte de los átomos con el comportamiento de los electrones, en concreto con la distancia a la que éstos se encuentran del núcleo.
https://books.google.com.mx/books?id=UkGWKsJ7ZbYC&pg=PA165&dq=Ciencias+3,+Qu%C3%ADmica,bohr&hl=es-419&sa=X&ei=73bhVIbMFc7qoATz5IK4BQ&ved=0CB8Q6wEwAA#v=onepage&q=Ciencias%203%2C%20Qu%C3%ADmica%2Cbohr&f=false
pag# 169 y 170
(Niels Henrik David Bohr; Copenhague, 1885 - 1962) Físico danés. Considerado como una de las figuras más deslumbrantes de la física contemporánea y, por sus aportaciones teóricas y sus trabajos prácticos, como uno de los padres de la bomba atómica, fue galardonado en 1922 con el Premio Nobel de Física "por su investigación acerca de la estructura de los átomos y la radiación que emana de ellos".
Pese a contravenir principios de la física clásica, su modelo atómico, que incorporaba el modelo de átomo planetario de Rutherford y la noción de cuanto de acción introducida por Planck, permitió explicar tanto la estabilidad del átomo como de sus propiedades de emisión y de absorción de radiación. En esta teoría, el electrón puede ocupar algunas órbitas estacionarias en las cuales no irradia energía, y los procesos de emisión y de absorción son concebidos como transiciones del electrón de una órbita estacionaria a otra.
El modelo atómico de Bohr
Las primeras aportaciones relevantes de Bohr a la Física contemporánea tuvieron lugar en 1913, cuando, para afrontar los problemas con que había topado su maestro y amigo Rutherford, afirmó que los movimientos internos que tienen lugar en el átomo están regidos por leyes particulares, ajenas a las de la física tradicional. Al hilo de esta afirmación, Bohr observó también que los electrones, cuando se hallan en ciertos estados estacionarios, dejan de irradiar energía.
En realidad, Rutherford había vislumbrado un átomo de hidrógeno conformado por un protón (es decir, una carga positiva central) y un partícula negativa que giraría alrededor de dicho protón de un modo semejante al desplazamiento descrito por los planetas en sus órbitas en torno al sol. Pero esta teoría contravenía las leyes de la física tradicional, puesto que, a tenor de lo conocido hasta entonces, una carga eléctrica en movimiento tenía que irradiar energía, y, por lo tanto, el átomo no podría ser estable.
Niels Bohr aceptó, en parte, la teoría atómica de Rutherford, pero la superó combinándolo con las teorías cuánticas de Max Planck (1858-1947). En los tres artículos que publicó en el Philosophical Magazine en 1913, Bohr enunció tres de sus postulados.
Modelo atómico de Rutherford
Primer Postulado:
Los electrones giran alrededor del núcleo en órbitas estacionarias sin emitir energía
Segundo Postulado:
Los electrones solo pueden girar alrededor del núcleo en aquellas órbitas para las cuales el momento angular del electrón es un múltiplo entero de h/2p.
Los electrones giran alrededor del núcleo en órbitas estacionarias sin emitir energía
Segundo Postulado:
Los electrones solo pueden girar alrededor del núcleo en aquellas órbitas para las cuales el momento angular del electrón es un múltiplo entero de h/2p.
siendo "h" la constante de Planck, m la masa del electrón, v su velocidad, r el radio de la órbita y n un número entero (n=1, 2, 3, ...) llamado número cuántico principal, que vale 1 para la primera órbita, 2 para la segunda, etc.
Tercer postulado:
Cuando un electrón pasa de una órbita externa a una más interna, la diferencia de energía entre ambas órbitas se emite en forma de radiación electromagnética.
Mientras el electrón se mueve en cualquiera de esas órbitas no radia energía, sólo lo hace cuando cambia de órbita. Si pasa de una órbita externa (de mayor energía) a otra más interna (de menor energía) emite energía, y la absorbe cuando pasa de una órbita interna a otra más externa. Por tanto, la energía absorbida o emitida será:
hola esta interesantes pero cual era su coneccion con bohr
ResponderEliminarpero no puedo tener una opinión sobre ellos
ResponderEliminar